Often programmers have assumptions that turn out, to their surprise, to be invalid. From my experience this happens a lot. Every API, technology or system can be abused beyond its limits and break in a miserable way.

It's particularly interesting when basic things used everywhere fail. Recently we've reached such a breaking point in a ubiquitous part of Linux networking: establishing a network connection using the connect() system call.

Since we are not doing anything special, just establishing TCP and UDP connections, how could anything go wrong? Here's one example: we noticed alerts from a misbehaving server, logged in to check it out and saw:

marek@:~# ssh 127.0.0.1
ssh: connect to host 127.0.0.1 port 22: Cannot assign requested address

You can imagine the face of my colleague who saw that. SSH to localhost refuses to work, while she was already using SSH to connect to that server! On another occasion:

marek@:~# dig cloudflare.com @1.1.1.1
dig: isc_socket_bind: address in use

This time a basic DNS query failed with a weird networking error. Failing DNS is a bad sign!

In both cases the problem was Linux running out of ephemeral ports. When this happens it's unable to establish any outgoing connections. This is a pretty serious failure. It's usually transient and if you don't know what to look for it might be hard to debug.

The root cause lies deeper though. We can often ignore limits on the number of outgoing connections. But we encountered cases where we hit limits on the number of concurrent outgoing connections during normal operation.

In this blog post I'll explain why we had these issues, how we worked around them, and present an userspace code implementing an improved variant of connect() syscall.

Outgoing connections on Linux part 1 - TCP

Let's start with a bit of historical background.

Long-lived connections

Back in 2014 Cloudflare announced support for WebSockets. We wrote two articles about it:

If you skim these blogs, you'll notice we were totally fine with the WebSocket protocol, framing and operation. What worried us was our capacity to handle large numbers of concurrent outgoing connections towards the origin servers. Since WebSockets are long-lived, allowing them through our servers might greatly increase the concurrent connection count. And this did turn out to be a problem. It was possible to hit a ceiling for a total number of outgoing connections imposed by the Linux networking stack.

In a pessimistic case, each Linux connection consumes a local port (ephemeral port), and therefore the total connection count is limited by the size of the ephemeral port range.